Problem 1: Generate four values from LogNor ($\mathrm{n}, 1.96$). Where n is the result of adding all digits of your phone number divided by 5 and rounded up. Use RV-bank beginning with the closest value to 0.66 , then moving column-wise.

Solution

My phone number is 443-885-4241 which results in $(4+4+3+8+8+5+4+2+4+1) / 5=43 / 5=8.6$, rounded up to 9 . So, $\mathrm{n}=9$. To generate random numbers for $\operatorname{LogNor}(9,1.96)$ we need to first generate numbers from $\mathrm{N}(9,1.96)$. I also need to find closest number to 0.66 in my RV Bank. A simple search gave me 0.662 (use Ctrl+F and enter 0.66 and find smallest value in your RV Bank that begins with 0.66 , then repeat the same process for 0.65 and find the largest number that begin with 0.65 of the two numbers whichever is closest, choose that). Moving column-wise, my $U(0,1)$ values are:
$\mathrm{u} 1=0.662, \mathrm{u} 2=0.599, \mathrm{u} 3=0.122, \mathrm{u} 4=0.907, \mathrm{u} 5=0.628, \mathrm{u} 6=0.838, \mathrm{u} 7=0.680, \mathrm{u} 8=0.634$ and more if needed.

0.656	0.329	0.307	0.982	0.917	0.131	0.30
0.779	0.642	0.192	0.888	0.769	0.687	0.003
0.751	0.713	0.036	0.036	0.662	0.291	0.861
0.631	0.142	0.775	0.668	0.599	0.081	0.8
0.116	0.233	0.039	0.960	0.122	0.036	0.578
0.385	0.607	0.202	0.855	0.907	0.49	0.8
0.534	0.449	0.853	0.091	0.628	0.624	0.447
0.979	0.763	0.530	0.809	0.838	0.32	0.058
0.782	0.037	0.419	0.352	0.680	0.673	0.873
0.862	0.679	0.754	0.547	0.634	0.331	0.578
0.284	0.816	0.641	0.526	0.348	0.428	0.874
0.504	0.100	0.678	0.966	0.527	0.564	0.747

Variance is 1.96, yielding the value of standard deviation as 1.4 and following the steps of the algorithm:
$\mu=9, \sigma=1.4$
$\mathrm{u}_{1}=0.662, \mathrm{u}_{2}=0.599$,
$V_{1}^{2}=2 u_{1}-1=2(0.662)-1=0.324, V_{2}=2 u_{2}-1=2(0.599)-1=0.198$
$W=V_{1}{ }^{2}+V_{2}{ }^{2}=(0.324)^{2}+(0.198)^{2}=0.1442<1$
$y=\sqrt{\frac{-2 \ln w}{w}}=[(-2 \operatorname{Ln} 0.1442) / 0.1442]^{0.5}=5.1831$
$\mathrm{Z}_{1}=\mathrm{V}_{1} \mathrm{Y}=(0.324)(5.1831)=1.67934$ and $\mathrm{Z}_{2}=\mathrm{V}_{2} \mathrm{Y}=(0.198)(5.1831)=1.02626$
These values are from $N(0,1)$ to convert them to $N(9,1.96)$ we need to use the equation $X=\sigma Z+\mu$
$\mathrm{XN}_{1}=(1.4)(1.67934)+9=11.351$ and $\mathrm{XN}_{2}=(1.4)(1.02626)+9=10.4368$.
In addition, to find the values for $\operatorname{LogNor}(9,1.96)$ we need to perform:
$X L N_{1}=e^{X N 1}=e^{11.351}=85056.57$ and $X L N_{2}=e^{X N 2}=e^{10.4368}=34090.23$.
The next two numbers are created the same way. Here are the calculations:
$\mu=9, \sigma=1.4$
$u_{1}=0.122, u_{2}=0.907$
$V_{1}^{2}=2 u_{1}-1=-0.756, V_{2}=2 u_{2}-1=0.814$
$W=V_{1}^{2}+V_{2}^{2}=1.23413>1$
Since W is greater than 1 , we need to go back to step 2 and generate two new $U(0,1)$ values.
$\mathrm{u}_{1}=0.628, \mathrm{u}_{2}=0.838$
$\mathrm{V}_{1}{ }^{2}=2 \mathrm{u}_{1}-1=0.256, \mathrm{~V}_{2}=2 \mathrm{u}_{2}-1=0.676$
$W=V_{1}{ }^{2}+V_{2}{ }^{2}=0.5225<1$
$Y=1.5762$
$Z_{1}=0.4035$ and $Z_{2}=1.0655$
$\mathrm{XN}_{1}=9.565$ and $\mathrm{XN}_{2}=10.492$.
$X L N_{1}=14255.93$ and $X L N_{2}=36017.6$.

	Normal and Lognormal (μ, σ^{2}) Distributions							
$\begin{gathered} \text { r.v. } \\ 0.662 \\ 0.599 \end{gathered}$	μ	σ^{2}	σ					
	9	1.96	1.4					
		V_{1}	W	$W<=1 ?$	y	z1	XN1	XLN1
		$\begin{gathered} 0.324 \\ \mathbf{V}_{2} \end{gathered}$	0.14418	YES	5.183139	$\begin{gathered} 1.679337 \\ \text { z2 } \end{gathered}$	$\begin{gathered} 11.35107 \\ \text { XN2 } \end{gathered}$	$\begin{gathered} 85056.57 \\ \text { XLN2 } \end{gathered}$
		0.198				1.026262	10.43677	34090.23

Problem 2: Use your RV-Bank beginning from random number in row 8 , column 8 and moving columnwise. Generate one random number from a gamma distribution where $\beta=2$ nd largest number in your cell phone number and $\alpha=0$. length of your longest finger in millimeters.

Solution

My phone number: 443-885-4241. Second largest number is 5 , so, $\beta=5$. Length of my longest finger 4.25 inches equivalent to 82.55 millimeters. So, $\alpha=0.885$.

Starting from the cell at $(8,8)$ and moving column-wise, here are the values of $U(0,1)$ to use:
$\mathrm{u} 1=0.297, \mathrm{u} 2=0.462, \mathrm{u} 3=0.957, \mathrm{u} 4=0.627, \mathrm{u} 5=0.803, \mathrm{u} 6=0.995, \mathrm{u} 7=0.720, \mathrm{u} 8=0.446$ and more if needed.

1	2	3	4	5	6	7	8	9
0.834	0.531	0.123	0.780	0.424	0.278	0.740	0.802	0.99
0.468	0.558	0.909	0.835	0.956	0.199	0.113	0.149	0.74
0.024	0.354	0.860	0.649	0.094	0.664	0.190	0.770	0.35
0.896	0.783	0.545	0.281	0.823	0.781	0.548	0.466	0.02
0.846	0.829	0.696	0.581	0.718	0.587	0.032	0.111	0.70
0.796	0.740	0.506	0.487	0.255	0.773	0.330	0.286	0.45
0.182	0.675	0.449	0.025	0.381	0.652	0.058	0.118	0.52
0.120	0.924	0.951	0.246	0.867	0.983	0.903	0.297	0.44
0.656	0.329	0.307	0.982	0.917	0.131	0.309	0.462	0.79
0.779	0.642	0.192	0.888	0.769	0.687	0.003	0.957	0.86
0.751	0.713	0.036	0.036	0.662	0.291	0.861	0.627	0.40
0.631	0.142	0.775	0.668	0.599	0.081	0.831	0.803	0.58
0.116	0.233	0.039	0.960	0.122	0.036	0.578	0.995	0.63
0.385	0.607	0.202	0.855	0.907	0.496	0.856	0.720	0.04
0.534	0.449	0.853	0.091	0.628	0.624	0.447	0.446	0.50
0.979	0.763	0.530	0.809	0.838	0.321	0.058	0.279	0.15

Using the algorithm provided in the handout:
$\alpha=0.885, \beta=5$
$b=(e+\alpha) / e=1.3255$
$u 1=0.297, P=b u 1=0.3937<1$
$y=P^{(1 / \alpha)}=0.3488, u 2=0.462<e^{-y}=0.706$, therefore, $w=y=0.3488$
This value is from Gamma $(0.885,1)$. In order to convert it to Gamma $(0.885,5)$, simply multiply it by 5.
$X=1.744$.

Problem 3: Use your RV-Bank beginning from random number in row 4, column 4 and moving row-wise. Generate one random number from a gamma distribution where $\beta=2$ nd largest number in your student ID number and $\alpha=$ month of your birth.length of your shortest finger in millimeters.

	1	2	3	4	5	6	7	8	9	10	11
1	0.834	0.531	0.123	0.780	0.424	0.278	0.740	0.802	0.998	0.944	0.323
2	0.468	0.558	0.909	0.835	0.956	0.199	0.113	0.149	0.746	0.405	0.828
3	0.024	0.354	0.860	0.649	0.094	0.664	0.190	0.770	0.350	0.970	0.990
4	0.896	0.783	0.545	0.281	0.823	0.781	0.548	0.466	0.026	0.314	0.997
5	0.846	0.829	0.696	0.581	0.718	0.587	0.032	0.111	0.703	0.111	0.855
6	0.796	0.740	0.506	0.487	0.255	0.773	0.330	0.286	0.453	0.931	0.728
7	0.182	0.675	0.449	0.025	0.381	0.652	0.058	0.118	0.523	0.922	0.227
8	ก170	ก Q2^	ก Q51	ก 216	ก 867	\bigcirc Q82	\bigcirc १ก२	ก 297	\bigcirc ィィก	$\bigcirc \cap 7$	$\bigcirc 382$

$\mathrm{u} 1=0.281, \mathrm{u} 2=0.823, \mathrm{u} 3=0.781, \mathrm{u} 4=0.548, \mathrm{u} 5=0.466, \mathrm{u} 6=0.026, \mathrm{u} 7=0.314$ and more if needed.
Let us assume that the birth month is March and length of shortest finger is 2.125 inches, which is equivalent to 54 millimeters and second largest number in student ID is 7 . Then, $\alpha=3.54$, and $\beta=7$.

Using the algorithm provided in the handout:
$a=\frac{1}{\sqrt{2 \alpha-1}}, b=\alpha-\ln 4, q=\alpha+\frac{1}{a}, \theta=4.5, d=1+\ln \theta$
$a=0.4055, b=2.1537, q=6.0057, \theta=4.5$, and $d=2.5041$.
$u 1=0.281$, and $u 2=0.823$.
$v=a^{\ln \left[\frac{u_{1}}{1-u_{1}}\right]}, y=\alpha e^{v}, \quad z=u_{12} u_{2, \text { and }} u=b+q v-y$
$v=-0.3810, y=2.4184, z=0.065, w=-2.553$
Since $\omega+d-\theta Z=-0.3413<0$, we will proceed to step 5 .
Since $w=-2.553>\operatorname{Ln} z=-2.7336$, then $T=y=2.4184$.
This value is from Gamma $(3.54,1)$. In order to convert it to Gamma $(3.54,7)$, simply multiply it by 7.
$X=16.9288$

	Gamma (α, β) Distribution for $\alpha>1$							
r.v.	a	β	a	b	q	θ	d	
	3.54	7	0.405554	2.153706	6.005766	4.5	2.504077	
0.281								
0.823		v	y	z	w	$N+\mathrm{d}-\boldsymbol{\theta}_{\mathbf{z}}$	T	X
		-0.38102	2.418401	0.064985	-2.55301	-0.34137	No	NO
						In z	T	X
						-2.7336	2.418401	16.9288

Problem 4: Use your RV-Bank beginning from random number in row 20, column 20 and moving column-wise. Generate five random numbers from Tria (4.11, 6.nn, 8.74), where nn is two digits of your birth day.

Solution

Let us assume, $\mathrm{nn}=15$, $\operatorname{TRIA}(4.11,6.15,8.74)$. u1 $=0.268$ (from cell $(20,20)$), u2 $=0.834$ (from cell (1 , $1)$), u3 $=0.468$ (from cell $(2,1))$, u4 $=0.024$ (from cell $(3,1)$), and $u 5=0.896$ (from cell $(4,1)$).

$$
k=\frac{m-a}{b-a}
$$

$K=(6.15-4.11) /(8.74-4.11)=0.441$
u1 $=0.268<0.441$, then $y=\sqrt{k u}=0.344, x=\square+(\square-\square) y, x=5.263$
$\mathrm{u} 2=0.834>0.441$, then $y=1-\sqrt{(1-k)(1-u)}=0.086, x=5.688$
$u 3=0.468>0.441$, then $y=1-\sqrt{(1-k)(1-u)}=0.316, x=5.126$
$u 4=0.024<0.441$, then $y=\sqrt{k u}=0.103$
$u 5=0.896>0.441$, then $y=1-\sqrt{(1-k)(1-u)}=0.053, x=5.11$

