EXAMPLES - Uniform Series That Are Shifted

EXAMPLE-1

the offshore design group at Bechtel just purchased upgraded CAD software for \$5000 now and annual payments of \$500 per year for 6 years starting 3 years from now for annual upgrades. What is the present worth in year 0 of the payments if the interest rate is 8% per year?

Solution

The cash flow diagram is shown in Figure 3–4. The symbol PA is used throughout this chapter to represent the present worth of a uniform annual series A, and P'A represents the present worth at a time other than period 0. Similarly, PT represents the total present worth at time 0. The correct placement of P'A and the diagram renumbering to obtain n are also indicated. Note that P'A is located in actual year 2, not year 3. Also, n=6, not 8, for the P/A factor. First, find the value of P'A of the shifted series.

$$P_A' = $500(P/A, 8\%, 6)$$

Since P'_A is located in year 2, now find P_A in year 0.

$$P_A = P_A'(P/F, 8\%, 2)$$

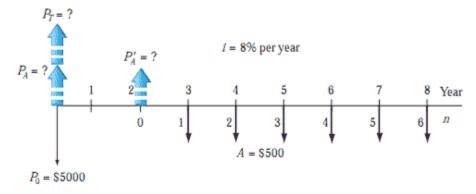


Figure 3-4

Cash flow diagram with placement of P values, Example 3.1.

The total present worth is determined by adding P_A and the initial payment P_0 in year 0.

$$P_T = P_0 + P_A$$
= 5000 + 500(P/A,8%,6)(P/F,8%,2)
= 5000 + 500(4.6229)(0.8573)
= \$6981.60

EXAMPLE-2

Recalibration of sensitive measuring devices costs \$8000 per year. If the machine will be recalibrated for each of 6 years starting 3 years after purchase, calculate the 8-year equivalent

uniform series at 16% per year. Show hand and spreadsheet solutions.

Solution by Hand

Figure 3–5 a and b shows the original cash flows and the desired equivalent diagram. To convert the \$8000 shifted series to an equivalent uniform series over all periods, first convert the uniform series into a present worth or future worth amount. Then either the A/P factor or the A/F factor can be used. Both methods are illustrated here.

Present worth method. (Refer to Figure 3–5a.) Calculate P'A for the shifted series in year 2, followed by PT in year 0. There are 6 years in the A series.

$$P'_A = 8000(P/A,16\%,6)$$

 $P_T = P'_A(P/F,16\%,2) = 8000(P/A,16\%,6)(P/F,16\%,2)$
 $= 8000(3.6847)(0.7432) = $21,907.75$

The equivalent series A' for 8 years can now be determined via the A/P factor.

$$A' = P_T(A/P, 16\%, 8) = $5043.60$$

Future worth method. (Refer to Figure 3–5a.) First calculate the future worth F in year 8.

$$F = 8000(F/A, 16\%, 6) = $71,820$$

The A/F factor is now used to obtain A' over all 8 years.

$$A' = F(A/F, 16\%, 8) = $5043.20$$

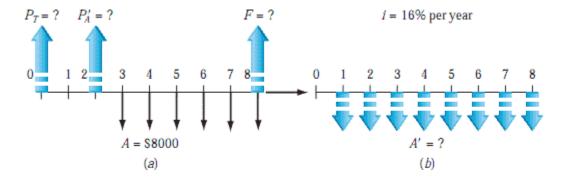


Figure 3-5

(a) Original and (b) equivalent cash flow diagrams; and (c) spreadsheet functions to determine P and A, Example 3.2.

Source:

http://engineering and economic analysis. blog spot.com/2014/05/examples-uniform-series-that-are-shifted. html